Click here to sign in with or
by Li Yuan, Chinese Academy of Sciences
Lithium-ion batteries are relatively safe, long-lasting, fast charging and better for the environment than non-rechargeable batteries—right? Not quite. The rocking-chair mechanism that allows for commercial power storage generally uses rare earth elements, such as nickel and cobalt.
Researchers have long been on the hunt for alternative batteries that boast all the benefits of lithium-ion versions but include ecological and economic advantages.
Now, a team from the Qingdao Institute of Bioenergy and Bioprocess Technology (QIBEBT), Chinese Academy of Sciences (CAS), is closing in on an improved approach. They provided solution to what they call a "notorious issue" that causes the system to malfunction when the battery recharges and discharges, called cycling.
Their study was published in Advanced Materials on Dec. 24.
Dual-ion batteries (DIBs) have attracted extensive attention due to their non-transition metal configuration, economy and environmental friendliness. "Practical implementation of DIB technology is nearly stagnant, mainly due to rapid battery failure during high-voltage cycling," said first author Jiang Hongzhu, doctoral candidate at QIBEBT, CAS.
In DIBs, positively and negatively charged ions simultaneously move from the electrolyte—the liquid or film that disperses the ions of a dissolved material and electrically conducts them across a space—to the opposite electrode. The "notorious issue," according to Jiang, is the solvent used in the electrolyte can insert into the graphite layers of the electrodes due to anion-solvent interactions.
"Eventually, this solvent co-intercalation results in graphite exfoliation and pulverization at high potential, especially in the widely used linear carbonate electrolytes," Jiang said. She also noted that high-voltage cycling can also lead to the oxidation of thermodynamically unstable electrolytes. Previous strategies focusing on enhancing the stability of electrolytes have not effectively addressed the critical issue of solvent co-intercalation.
To prevent co-intercalation and electrolyte corrosion, the researchers needed to decouple the negatively charged anions from the solvent. A viable approach is to regulate the anion solvation structure by introducing another component that possesses stronger interaction with anions than carbonate solvents into the electrolyte.
The researchers focused on hexafluorophosphate, an anionic component in lithium-ion batteries. They employed an important monomer containing quaternary ammonium motifs—which are positively charged—to develop a polymer electrolyte membrane that can selectively filter anions. It resulted in superb cycling stability with a 99% coulombic efficiency at high voltage.
"This strategy significantly inhibits solvent co-intercalation, as well as enhances the oxidation resistance of the electrolyte, ensuring the structural integrity of the graphite," said paper author Cui Guanglei, professor at QIBEBT, CAS. "We believe facilitating the anion desolvation is crucial to ameliorate long cycling performance in DIBs." Explore further Solvation rearrangement brings stable zinc/graphite batteries closer to commercial grid storage More information: Hongzhu Jiang et al, A PF 6 − ‐Permselective Polymer Electrolyte with Anion Solvation Regulation Enabling Long‐cycle Dual‐ion Battery, Advanced Materials (2021). DOI: 10.1002/adma.202108665 Journal information: Advanced Materials
Provided by Chinese Academy of Sciences Citation: Selective membrane may cycle dual-ion batteries closer to reality (2022, January 19) retrieved 14 May 2022 from https://phys.org/news/2022-01-membrane-dual-ion-batteries-closer-reality.html This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.More from Physics Forums | Science Articles, Homework Help, Discussion
Use this form if you have come across a typo, inaccuracy or would like to send an edit request for the content on this page. For general inquiries, please use our contact form. For general feedback, use the public comments section below (please adhere to guidelines).
Please select the most appropriate category to facilitate processing of your request
Thank you for taking time to provide your feedback to the editors.
Your feedback is important to us. However, we do not guarantee individual replies due to the high volume of messages.
Your email address is used only to let the recipient know who sent the email. Neither your address nor the recipient's address will be used for any other purpose. The information you enter will appear in your e-mail message and is not retained by Phys.org in any form.
Get weekly and/or daily updates delivered to your inbox. You can unsubscribe at any time and we'll never share your details to third parties.
Medical research advances and health news
The latest engineering, electronics and technology advances
The most comprehensive sci-tech news coverage on the web
This site uses cookies to assist with navigation, analyse your use of our services, collect data for ads personalisation and provide content from third parties. By using our site, you acknowledge that you have read and understand our Privacy Policy and Terms of Use.