Hydrogen-tuned topological insulators may lead to new platforms in sustainable quantum electronics

2022-05-13 03:47:06 By : Ms. Suri Lee

Click here to sign in with or

by The City University of New York

A team led by City College of New York physicist Lia Krusin-Elbaum is behind research that could open a breadth of new quantum device platforms for harnessing emergent topological states for nano-spintronics and fault-tolerant quantum computing.

The group of physicists and chemists has invented a new facile and powerful technique that uses ionic hydrogen to reduce charge carrier density in the bulk of three-dimensional (3D) topological insulators and magnets. The result is that robust non-dissipative surface or edge quantum conduction channels can be accessed for manipulation and control. Their research, "Topological surface currents accessed through reversible hydrogenation of the three-dimensional bulk," appears in the journal Nature Communications.

The novel hydrogen-tuning technique of chalcogen-based topological materials and nanostructures implemented in a laboratory chamber uses insertion and extraction of ionic hydrogen from dilute aqueous hydrochloric acid (HCl) solution, which leaves the layered topological crystal structure as well as electronic bands intact and has an extra benefit of removing native surface oxide while passivating surfaces. In this process—which the City College team tests in the Krusin Lab for two-dimensional electrical transport—electrons are donated by a reversible binding of H+ ions to chalcogens, such as Te or Se, and bulk carrier densities are reduced by orders of magnitude to achieve access to robust topological surface states without altering carrier mobility or the bandstructure.

"The main advance of this work is that the new hydrogenation process is fully reversible, as hydrogen-chalcogen moiety can be disassociated by a low-temperature annealing protocol under which hydrogen is easily removed," said Krusin-Elbaum, professor in CCNY's Division of Science. "It is also multiply-cyclable and reproducible, thereby resolving one of the key limitations of magnetic and nonmagnetic topological insulators and can be applied not only post-growth to materials but also to fully fabricated nanodevices."

The research in the Krusin Lab centers on exploring novel quantum phenomena such as Quantum Anomalous Hall (QAH) effect, which describes an insulator that conducts dissipationless current in discrete channels on its surfaces, 2D superconductivity, and axion state phenomena featuring a quantized thermal transport, all with the potential if industrialized to advance energy-efficient technologies.

Krusin-Elbaum and her team said that the technique they have demonstrated is very general and ultimately may advance the potential of intrinsic topological magnets to transform future quantum electronics. Explore further New study reveals topological charge-entropy relation in kagome Chern magnet More information: Haiming Deng et al, Topological surface currents accessed through reversible hydrogenation of the three-dimensional bulk, Nature Communications (2022). DOI: 10.1038/s41467-022-29957-3 Journal information: Nature Communications

Provided by The City University of New York Citation: Hydrogen-tuned topological insulators may lead to new platforms in sustainable quantum electronics (2022, May 4) retrieved 12 May 2022 from https://phys.org/news/2022-05-hydrogen-tuned-topological-insulators-platforms-sustainable.html This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

More from Physics Forums | Science Articles, Homework Help, Discussion

Use this form if you have come across a typo, inaccuracy or would like to send an edit request for the content on this page. For general inquiries, please use our contact form. For general feedback, use the public comments section below (please adhere to guidelines).

Please select the most appropriate category to facilitate processing of your request

Thank you for taking time to provide your feedback to the editors.

Your feedback is important to us. However, we do not guarantee individual replies due to the high volume of messages.

Your email address is used only to let the recipient know who sent the email. Neither your address nor the recipient's address will be used for any other purpose. The information you enter will appear in your e-mail message and is not retained by Phys.org in any form.

Get weekly and/or daily updates delivered to your inbox. You can unsubscribe at any time and we'll never share your details to third parties.

Medical research advances and health news

The latest engineering, electronics and technology advances

The most comprehensive sci-tech news coverage on the web

This site uses cookies to assist with navigation, analyse your use of our services, collect data for ads personalisation and provide content from third parties. By using our site, you acknowledge that you have read and understand our Privacy Policy and Terms of Use.